
Design Purpose

- Space-tug for multiple trips between LEO, GEO and LLO carrying 34 metric tons of cargo
- Throttable propulsion with long lifespan and efficient fuel consumption
- Ideal lifespan of 30 clients for 7 years of continuous operation
- Modular assembly for repairs to extend life, and easy disposal of at-risk components through heliocentric graveyard orbit

Cost Analysis

ISS Resupply	SpaceX	Orbital ATK	
Contract Cost	\$70M	\$100-125M	
Actual Cost	\$30.6-40M	\$75-100M	
Mass per Payload	2MT	2MT	

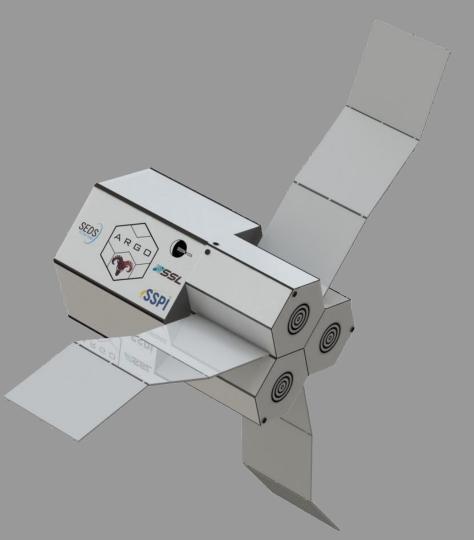
	GEO via Falcon 9	GEO via Argo x Falcon 9	LLO via SLS	LLO vis Argo x Falcon 9
Cost per Kilogram	\$7,470	\$4,000	\$0.5-1M	\$6,500

Structures/Propellant Feed

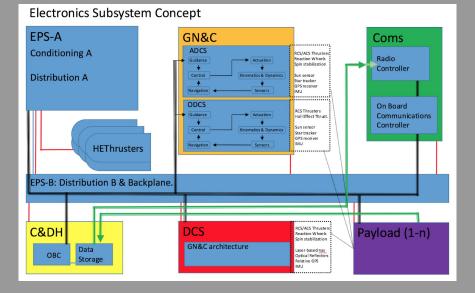
- Main structure is designed around the main tank. Comprised of aluminum and Titanium
 - COPV tank. Possible multiple tanks to maximize space efficiency
- Radiators leak off excess heat
- Propellant Feed system designed as an upscaled Xenon Feed currently featured on satellite
 - Flow control for throttle control; more power for more time critical missions

SEDS

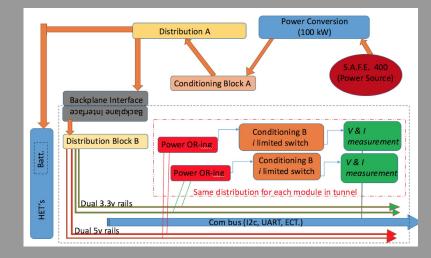
- System needs to be refuelable
- Provides propellant to ACS thrusters for both Attitude control and emergency venting


Engines

- Power Limited & Thrust Demanding
- Three X3 Hall Effect Thrusters
 - 100 kW each
 - 5.4 N each
- University of Michigan Plasmadynamics & Electric Propulsion Laboratory
 - Three Channel Design
 - Throttling
- Lifespan (10,000 hr)
 - Channel Wall Erosion / Degradation
 - Magnetic Shielding Research



Power Systems


- SAFE-400 reactor with a Brayton Power system
- Brayton offers 100 kW electrical power with 300 kW waste - current design limitation
- Advancements in efficient power conversion required for feasible design

Electrical Systems

Track Study: Proposed 'Tunnel Swapping' vs Traditional Shielding Techniques TID calc for 8 years Tunnel Swapping (5mm) Traditional Shielding (10mm) Additional Mass Al 4.341 kg 2.028 kg 6.2 krad 5 krad TID Low Earth Orbit Additional Mass Ta 12.316 kg 26.4 kg assumed module 10 cm X 10 cm X 30 cm 1608 cm3 at 10mm thickness; 751 cm3 at 5mm thickness; Aluminium density 2.7 g/cm3, Tantalum density 16.4 g/cm3

Results

- 34 MT to LLO in 45-90 (one way) days depending on mass and orbital positioning
- 34 MT to GEO in 7-14 (one way) days
- Reliable operation for 7 years with potentially 30 clients depending on mission parameters
- Retrofitting capabilities for future potential mission capabilities

Questions?