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Preparing Electrical Signals for Data Collection 

with Filters and Amplifiers  

Abstract: 

Engineers of all specialties will at times be faced with data sets that are non-ideal and in need of 

conditioning via electrical circuits, post-processing, or both to make data easier to extract meaning from. 

Low-pass or high-pass filters allow low or high frequency components respectively to pass through them 

relatively unaffected (passband) while drastically reducing the amplitude of other frequencies 

(stopband). These filters can be characterized by a time constant—a value that affects the response rate 

and passband to stopband transition point of the filter. Filters enable certain frequencies such as those 

of noise, offsets, or aliased frequencies to be targeted and reduced during data collection. Amplifiers 

increase the magnitude of signals with the energy from their own power supplies. This can allow more 

accuracy to be obtained when using lower resolution measuring devices or when dealing with small 

amplitude signals such of those coming from a thermocouple. These techniques can be used in 

combination along with averaging data in the frequency domain to obtain cleaner experimental or 

measured results. 

Introduction: 

Signal conditioning is an important aspect of experimentation that, if done incorrectly, can have 

a drastic negative effect on the quality of recorded data—making large sets of data unusable and 

amounting to many wasted man-hours. To correctly condition signals with electrical circuits, it is 

important to understand specific characteristics of common data collection circuit elements. 

A simple RC filter circuit is comprised of a resistor, with resistance R, and capacitor, with 

capacitance C. The position of these two components relative to a filter’s input and output signals 

determine if the filter will attenuate high frequency components of the signal (low-pass filter) or 

attenuate low frequency components of the signal (high-pass filter)1. The product of the chosen values 

of R and C define a quantity known as the RC time constant which has units of seconds and defines some 

important characteristics of the conditioning elements. 

The value of RC is a measure of how quickly the filter will respond to a sudden change in voltage 

applied to the system—such as a square wave input where the signal varies almost instantaneously. One 

time constant after the initial application of a constant voltage to a RC filter that has been allowed to 

reach steady-state, the output signal of the filter will have recovered 63% of the change in the input’s 

voltage. This value of RC characterizes how quickly the filtered signal will respond to changes in the 

states of the unfiltered signal2. 



A crucial quantity in signal conditioning is the cutoff, also known as the -3 decibel (dB) frequency 

or the corner frequency. This is the frequency at which a filter transitions from allowing a considerable 

amount of amplitude to pass through it (pass-band) to attenuating most of the amplitude it receives 

(stop-band) or vice versa. The gain of a filter is the ratio of the input to output magnitudes (in units of 

voltage) that a certain frequency experiences while passing through the component. The power gain is 

just this same ratio squared and has the property of being equal to .5 at the cutoff frequency of a filter. 

The magnitude of these gains often varies drastically over a large range of frequencies, so it is 

convenient to express them in a logarithmic scale, as the units of decibels does. Bode diagrams of the 

transfer function of a component are easy representations of how a filter will affect a range of 

frequency components passing through it. These plots are expressed as gain or power gain (in dB) vs 

frequency (in Hz or kHz)1. 

Inverting operational amplifiers are a circuit component whose frequency-response-bode-plots 

closely resemble that of a low-pass filter, however, low frequency signals have a gain greater than one 

but a flipped polarity. These devices will ultimately amplify the magnitude of a signal passing through 

them and need to be connected to an external power source to provide the energy input necessary to 

accomplish this task3. The cutoff frequency for an operational amplifier is defined as the frequency at 

which the power gain of the component is .5 that of its maximum DC value. As will be discussed later, 

this is the same as being 3 dB below the maximum decibel gain of the op-amp. 

A combination of these conditioning elements is often used to target a certain range of 

frequencies that an engineer or system is interested in the most for data collection. The transfer 

function is overall a way of quantifying how different frequencies are affected by signal conditioning 

techniques. Different combinations of components will have unique transfer functions that will be a 

combination of the individual component’s transfer functions. The overall transfer function is an 

important tool in designing a filtering circuit that fits the experiment. How does an engineer go about 

picking the specifics of these conditioning circuits that will best fit their intended purpose? This work 

focuses on revealing common techniques to obtain transfer function graphs for common filtering 

circuits and how to use them to improve the quality of collected data. In this article, the RC time 

constant was measured and used for a certain value of R and C in a filter. Frequency-response-bode-

plots were generated for low-pass, high-pass, and operational amplifiers to see how they would affect 

different frequency input signals. Various methods were also used to determine a cutoff frequency for 

the different types of conditioning elements. How these phenomena can be combined and used 

together in engineering applications was also touched on when a high-pass filter and operational 

amplifier were used in series. 

  



Results: 

Characterizing an RC Filter 

 An RC low-pass filter 

comprised of a 9.96 kΩ resistor 

and a capacitor of unknown 

capacitance, C, was hooked up 

to a signal generator. The 

measured system response to a 

100 Hz square wave input with 

a Vpp value of 5 V is depicted in 

Figure 1. The figure shows the 

input and output voltages of the 

filter with respect to ground as 

a function of time. It was 

measured that it took 720 µs for 

the output signal to recover 63% of 

the change in the input signal. As 

described by equation 1, this time 

value is what is known as the RC 

time constant and is the value of R 

and C multiplied together. 

Knowing the resistance and time 

constant, the capacitance was 

solved for and determined to be 

72 nF. Setup diagrams for this and 

other parts of this article can be 

found in the methods section.  

 Sine waves of various 

frequencies and a Vpp value of 10 V 

were then sent through the same 

low-pass filter via the signal 

generator. Figure 2 shows the 

system’s response to 3 different 

frequency sine waves. The -3 dB 

cutoff frequency was found by 

varying the input frequency 

coming from the signal generator 

until the oscilloscope measuring 

the system read an output voltage 

that was .707 times the input 

voltage (7.07 V) as described by 

equation 2. This locates the point at 

Figure 1: Response of a low-pass filter with resistance 9.96 

kΩ and unknown capacitance to a 100 Hz square wave with a 

Vpp value of 5 V. The points at which 63% of the change in 

input voltage is recovered by the output signal of the filter 

are marked with horizonal lines. 

Figure 2: Response of same low-pass filter to varying input 

frequencies. (a) Response to 185 Hz. (b) Response to 228 Hz 

that was determined to be the cutoff frequency. (c) Response 

to 270 Hz. 

 



which the output power is half that of the 

input and it occurred when the signal 

generator was making a signal of frequency 

228 ± 3 Hz. Data was saved from multiple 

signals using this technique. The gains of these 

signals were calculated, converted to decibels 

with equation 2, and plotted as points on the 

filter’s transfer function in figure 3 below. 

As can be seen, it is hard to obtain 

enough data points using this method to get a 

good representation of the filter’s response 

over a wide range of frequencies. New 

methods will now be looked at to help 

improve upon this dilemma. 

The positions of the capacitor and 

resistor in the following circuit were then 

switched, forming a high-pass filter. The signal 

generator was set to give the filter an input of 

white noise (a random signal having equal 

intensity at different frequencies) and the 

filter’s input and output voltage vs time 

responses were each recorded eight different 

times. This data was taken into MATLAB and 

the fast Fourier transform (code can be found in the appendix) was done on all the data sets to take 

them into the frequency domain. Gains were then calculated by dividing output by input amplitudes in 

the frequency domain and the eight gains were averaged in this domain. Figure 4 shows the resulting 

frequency response of this filter over a large range of different input frequencies. A discontinuity of 

sorts was observed around 60 Hz and the -3 dB cutoff was measured to happen at 230 ± 5 Hz. 

Figure 3: Gains of Figure 2 responses calculated and 

put on frequency response plots. (a) Voltage gain as 

a function of frequency. (b) Power gain as a 

function of frequency. 

 

Figure 4: High-pass filter’s frequency response to white noise. A discontinuity of sorts was observed around 

60 Hz and the -3 dB cutoff was measured to happen at 230 ± 5 Hz. (a) Graph of voltage gain vs frequency. (b) 

Graph of power gain vs frequency. 

 



Characterizing an Inverting Operational Amplifier 

Next, an inverting amplifier was setup with a 1 kΩ and 49.9 kΩ resistor as described in the 

methods section. A computer program was then used to generate continuous white noise with a digital 

acquisition board that was sent through the op-amp. The digital acquisition board and computer 

program also was used to measure the voltage vs time responses of the op-amp’s input and output. The 

computer program took the discrete Fourier transform of both signals 10 different times and averaged 

them in the frequency domain. The gain was then calculated, converted to decibels, and plotted in 

figure 5 that shows the resulting frequency response of this conditioning component. The -3 dB cutoff 

frequency was found to be 14.2 ± .2 kHz. The operational amplifier’s DC gain was found to be 35 ± 3 dB. 

Characterizing an Inverting Operational Amplifier and High-Pass Filter in Series 

Now that the individual frequency responses of the high-pass filter and inverting op-amp have 

been examined, what do you think happens if a high-pass filter and inverting op-amp are placed in 

series? This was done with the operational amplifier depicted in Figure 5 and the high-pass filter 

depicted in figure 4. The resulting transfer function was obtained using the same exact method as was 

for the operational amplifier and is graphed in Figure 6 below. Two -3 dB cutoff frequencies were found 

at 14.3 ± .2 kHz and 2.3 ± .2 kHz. The maximum DC gain of this combination was found to be 34 ± 3 dB. 

  

Figure 5: The described operational amplifier’s frequency response over a large range of frequencies with 

a fit applied to the -20dB/decade falloff and -3 dB level graphed. (a) Graph of voltage gain vs frequency. 

(b) Graph of power gain vs frequency. 

 



 

  

Figure 6: The frequency response of the inverting op-amp and high-pass filter in series plotted over a 

large range of frequencies with a fit applied to the -20dB/decade falloff and the -3 dB level graphed. 

(a) Graph of voltage gain vs frequency. (b) Graph of power gain vs frequency. 

 



Discussion: 

 RC filters have a couple defining features that can be used to characterize them or match them 

to a need. It was observed that the value of R times C had a physical meaning. This has to do with the 

rate at which the output of the filter catches up to the input. The voltage on the non-grounded side of a 

capacitor in an RC filter follows equation 1 bellow. 

(1) …  𝑉𝐶 = 𝑉0(1 − 𝑒
−𝑡
𝑅𝐶) 

Where 𝑉0 is the filter’s input voltage, R is the resistance of the filter’s resistor, and C is the 

capacitance of the filter’s capacitor. Plugging in a value of 𝑡 = 𝑅𝐶 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 yields 𝑉𝐶 =. 63𝑉0. Since 𝑉𝐶 =

𝑉𝑜𝑢𝑡 and 𝑉0 = 𝑉𝑖𝑛, this means that after a time of one time constant, 63% of the difference between 

input and output has been recovered. It is important to note that this is only true if the voltages have 

reached equilibrium and then the input voltage is changed suddenly, such as what happens in a square 

wave of a frequency much less than 
1

𝑅𝐶
 𝐻𝑧 (a signal with a period much greater than the value of 

multiple time constants). 

 Equation 1 can be interpreted as the capacitor introducing lag into the system. The system no 

longer reacts instantaneously to a varied voltage input. Instead it reacts on the order of the RC time 

constant. This should be considered when selecting resistance and capacitance values of an RC filter for 

signal conditioning. As was done in the lab, by measuring this time constant by looking for the 𝑉𝑜𝑢𝑡 =

. 63𝑉𝑖𝑛 relationship on a voltage vs time plot, it is possible to solve for the value of R or C if the other is 

known. Measuring the time constant is depicted in figure 1. 

 Looking at the response of filters in the frequency domain—by taking the discrete Fourier 

transform of recorded time domain signals—yields completely different looking graphs. The ratio of 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 

is known as the filter’s gain and this is a function of frequency alone. The -3dB cutoff frequency of a RC 

filter (low-pass or high-pass) is defined as the point at which the signal’s power is halved from input to 

output. Since the amplitude (or voltage) squared is proportional to the power of the signal, this means 

that this happens when the gain is 
1

√2
. If we define a decibel (dB) as a unit with the relationship 

expressed in equation 2, it is possible to solve for the decibel value at which the gain of the system is 

equal to 
1

√2
. 

(2) …  𝑑𝐵 = 20 log10(𝑔𝑎𝑖𝑛) 

 Plugging 𝑔𝑎𝑖𝑛 =
1

√2
 into the above equation yields a value of -3.01 dB. The frequency at which 

this happens is of importance because it defines the frequency at which the filter switches from 

dramatically attenuating a signal, to letting most of it pass through or vice versa. As can be seen in our 

results, the positions of the resistor and capacitor in a RC filter determine if it will behave as a device 

that lets frequency components higher (high-pass) or lower (low-pass) than the cutoff frequency pass 

through it relatively unaffected. The cutoff frequency is also defined by the mathematical relationship 

given in equation 3. 

(3) … 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 =
1

2𝜋𝑅𝐶
 



 This equation can be used to calculate the theoretical cutoff frequency for our measured RC 

time constant of 720 µs. Plugging into equation 3, this theoretical frequency is 221 Hz. The measured 

cutoff frequency was determined to be 228 ± 3 Hz, yielding a minimum percent error of 1.81%. This is 

well within an acceptable margin of error and the results agree with theory quite well. Comparing 

theory to the 230 ± 5 Hz measured cutoff obtained from the transfer function of the high-pass filter 

made from the same capacitor and resistor also gives a minimum error of 1.81%. It makes sense how 

this value also agrees with theory since the cutoff frequency of a filter is independent of whether it is in 

a high or low pass configuration. These cutoff frequencies can be used to eliminate wide ranges of 

unwanted frequencies via filters before collecting data from a system or experiment. 

Operational amplifiers are very complicated devices that consist of many different transistors 

and resistors that produce a desired overall effect. Due to the fact these devices produce gains whose 

magnitudes are greater than 1—in other words they amplify a given input signal—they need to be 

connected to their own DC power source to put this additional energy into the system (since power is 

proportional to voltage squared). The absolute difference between these two power supply voltages 

given to the operational amplifier is directly related to the maximum voltage it can output. If the op-amp 

is setup in such a way that calls for gain amplification that would result in a voltage beyond this point, it 

will become saturated at its maximum possible output voltage, unable to achieve a voltage higher than 

the one determined by its power source. 

The gain of an operational amplifier can be selected by using equation 4 in combination with 

figure 9 in the methods section to solve for relative values of 𝑅𝑓 and 𝑅𝑖𝑛. Resistors can then be picked so 

that they satisfy this relationship to give the desired gain. 

(4) …  𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐺𝑎𝑖𝑛 = −
𝑅𝑓

𝑅𝑖𝑛
 

 The operational amplifier used in this lab had an 𝑅𝑓 value of 49.9 kΩ and an 𝑅𝑖𝑛 vale of 1 kΩ, 

therefore its theoretical gain value was 49.9. In decibels, this is a gain of 34 dB. The average DC gain 

value of this component was measured in figure 5 to be exactly this. Although it is important to note 

that this gain consistently fluctuates by up to about 3 dB in each direction from its average value. This 

could be due to the amplifier’s gain being slightly dependent upon the input voltage since the white 

noise given to the op-amp comprised of multiple different amplitude signals for every frequency. 

An operational amplifier also behaves somewhat like a low pass filter as can be seen in figure 5. 

It amplifies lower-frequency components at a constant gain, until is hits a cutoff frequency, at which the 

gain amplification drops off at a rate of approximately -20db/decade. This unit of decade represents a 

factor of 10 increase and can be easily represented as each large division if the linear scale of the 

frequency axis is changed to a logarithmic scale as it was in figures 5 and 6. It is important to be aware of 

this drop-off effect if during data collection the frequency of a component that is being ran through the 

op-amp lies beyond the cutoff frequency. A way that this can be corrected is by utilizing the gain 

bandwidth product of an op-amp. The gain bandwidth product is defined by equation 5. 

(5) …  𝐺𝑎𝑖𝑛 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = (𝐺𝑎𝑖𝑛)(𝑓𝑐𝑢𝑡𝑜𝑓𝑓) 

 This product has the feature of always being a constant value for a certain operational-amplifier. 

This gives us an inverse relationship between the gain and cutoff of an op-amp. Due to this fact, the 



cutoff frequency can be increased to ensure that the proper range of frequencies (bandwidth) is 

amplified. Decreasing the amplifier’s gain by selecting different resistors will in turn increase the cutoff 

frequency and the -20 db/decade falloff of the amplifier will happen at a higher frequency. 

 The cutoff frequency of our operational amplifier was measured to be 14.2 ± .2 kHz. Applying 

equation 5 with this value and the chosen gain of 49.9, the constant gain bandwidth product of our 

amplifier is 709 kHz. Comparing this value to the one of 800 kHz for 25 degrees Celsius given in the Texas 

Instruments LM 148 op-amp data sheet yields a percent of nearly 13%4. This error is most likely since the 

operational amplifier was running hotter than the temperature of the room. This would make sense 

because as temperature increases, the gain bandwidth product drops off linearly for this op-amp. This 

can be seen in the provided graphs in the op-amp’s data sheet. To accurately compare this value the 

temperature of the operational amplifier should have been recorded. 

Putting the high-pass filter in series with an operational amplifier has the effect of multiplying 

their frequency response graphs together as can be seen in figure 6. This is a useful technique if it is 

desired that only a certain band of frequencies (bandwidth) pass through the filter relatively 

unattenuated. Using this technique, it is possible to remove a DC-low-frequency offset, amplify a signal 

to levels above the resolution of a piece of equipment, and remove high-frequency noise from a signal 

with only two components: a high-pass RC filter and an operational amplifier. The measured bandwidth 

defined by the two -3 dB cutoff frequencies of this configuration was [2.3 ± .2 kHz to 14.2 ± .2 kHz]. It is 

important to note that the cutoff frequency of the op-amp stayed the same, while the cutoff frequency 

of the high-pass filter is shifted up to a higher frequency than the one that equation 3 gives us. This has 

to do with the fact that the transfer functions are being multiplied together, and the new -3 dB point 

that the filter is contributed is measured as -3 dB from the maximum DC gain of the operational 

amplifier. This needs to be remembered when creating bandwidth filters that amplify and restrict 

recorded data to a band of targeted frequencies. 

Conclusion: 

RC filters and operational amplifiers can be used alone or together to increase the quality of 

measured data during an experiment. Often experimentalists are limited by the resolutions, ranges, and 

sensitivities of their measuring devices. Conditioning signals so that they can be measured adequately is 

just as important as knowing the limitations of your measuring devices. High-frequency noise or aliased-

frequencies contaminating data can be eliminated by implementing a low-pass filter. Offsets that could 

potentially put signals outside of a device’s measuring range can be removed from data by using high-

pass filters. Operational amplifiers can amplify signals by a set amount to increase their visibility to 

obtain more accuracy if a measuring device has a low resolution or sensitivity. Lastly, these methods can 

be used in combination to achieve any desired effect. The topics discussed in this article are heavily used 

by cutting-edge experimentalists and any system that needs to obtain constant high-quality data from 

its surroundings such as self-driving cars or self-landing rockets. 

  



Methods: 

Characterizing an RC Filter 

 A simple low-pass filter 

as shown in figure 7 was created 

with a resistor rated as 10 kΩ 

and a random capacitor. The 

resistance of this component 

was then checked with a 

multimeter to obtain a more 

accurate value for its resistance. 

A 100 Hz square wave generated 

by a signal generator was then 

sent through the filter. A 2-channel oscilloscope was hooked up as shown in figure 8 to measure the 

voltage at the filter’s output and input nodes relative to ground. The oscilloscope was then used to 

measure the time it took for the output voltage to recover 63% of the change in an input voltage. This 

number was recorded, and the signal was saved and brought into MATLAB for further analysis. The 

recorded time value represents the time constant—value of resistance times capacitance—of the filter. 

Knowing the resistance, the capacitance can now be solved for because their product is equal to the 

time constant. 

 Now the cutoff frequency was 

found by passing sine waves of varying 

frequencies through the conditioning 

element via the signal generator until the 

oscilloscope measured a gain of 
1

√2
. This 

cutoff frequency value was recorded. 

The gains of a couple other frequencies 

were also measured, converted to 

decibels with equation 2, and plotted as 

points on the transfer function of the 

component in MATLAB. 

 Next a method for obtaining a complete transfer function quickly was tried. The setup was used 

as in figure 8, but the resistor and capacitor were switched to form a high-pass filter. The signal 

generator was used to pass white noise through the component and the oscilloscope was used to record 

the response of the input and output nodes eight different times. These saved signals were taken into 

MATLAB where the discrete Fourier transform was performed on them to take them into the frequency 

domain. The code for the discrete Fourier transformation is attached in the appendix. After this 

transformation, the signals were averaged in the frequency domain and then the resulting frequency 

dependent gains were, calculated, converted to decibels with equation 2, and plotted. The power gain is 

just the normal gain ratio squared and was also calculated and plotted in decibels. 

  

Figure 7: The configuration for (Left) low-pass and (right) high-

pass RC filters examined in this article. 

Figure 8: The configuration used to pass signals of varying 

frequencies through the low-pass filter and measure the 

input’s and output’s voltage responses. 



Characterizing an Inverting Operational 

Amplifier 

 A digital acquisition board was 

hooked up to an operational amplifier with 

the setup shown in figure 9 to provide a signal 

and to measure the system’s response. Two 

different channels of the digital acquisition 

board were used to measure the input and 

output voltages of the op-amp with respect 

to ground. A computer program was made to 

generate a white noise input signal and 

record the amplified and unamplified 

responses in the time domain. The program 

also took the discrete Fourier transforms of 

both signals for a set number of samples and plotted their averaged frequency domain amplitudes. 

These averaged frequency domain graphs and the time domain plots of the last signal to be averaged 

were saved and loaded into MATLAB for further analysis. In MATLAB, the gain was calculated by dividing 

the amplified amplitudes by their unamplified counterparts. The gain and power gain were then 

converted to decibels and plotted on a dB vs frequency plot with a logarithmic frequency scale. A fit was 

then applied to the -20dB/decade ‘falloff’ section of the graph and a line was plotted that represented 

the -3dB cutoff point. The intersection of these two lines was determined to be the cutoff frequency. 

Characterizing an Inverting 

Operational Amplifier and 

High-Pass Filter in Series 

 The same exact setup 

was used as with the 

operational amplifier alone, 

but now a high-pass filter was 

placed in series with the 

op-amp as shown in figure 

10. The setup was given an 

input of white noise and 

the input and output 

responses were measured 

all with the same data 

acquisition board. The same computer program and MATLAB techniques were used to acquire, analyze, 

and represent the system’s response. With the transfer function plotted, it became apparent that the 

system had two -3dB frequencies. Both frequencies, defining the bandwidth—band of frequencies that 

dominates the output of the system—were recorded. 

Figure 9: The configuration used to pass white noise 

through the operational amplifier and measure the 

input and output voltage responses with respect to 

ground. A digital acquisition board was used where AIX 

stands for analog input channel X and AO analog 

output channel X. 

Figure 10: The configuration used to pass white noise through the 

operational amplifier and high-pass filter and series. The 

configuration’s input and output voltages with respect to ground 

were also measured in a similar manner as before with a digital 

acquisition board. 



Appendix: 

Discrete (Fast) Fourier Transform MATLAB Script 
clc; 
clear all ;+5 
close all ; 
%This script generates a 20 Hz size wave of unit amplitude, of duration 1 
%second, and time resolution of 1E-2 seconds; then calculates the 
%single-sided Fourier transform and plots both quantities 
dt=1E-2; %s 
T=1; %s 
f_sig=20; %Hz 
7 
t=[0:dt:T-dt]; %time vector 
y=sin(2*pi*f_sig*t); %amplitude vector 
subplot(121) 
plot(t,y, '-b' , 'LineWidth' ,2); %plot the time series 
xlabel( 'time (s)' ); 
ylabel( 'Amplitude (V)' ); 
title( 'Time domain signal' ) 
set(gca, 'FontSize' ,20, 'LineWidth' ,2) 
F = fft(y); %calculate the Fast Fourier Transform 
Fs=1/dt; %define the sampling frequency 
L=length(t); %define the length of your time and amplitude vectors 
P2 = abs(F/L); %take the normalized amplitude of your Fourier transform 
P1 = P2(1:L/2+1); %adjust the length and scale to get single sided spectrum 
P1(2:end-1) = 2*P1(2:end-1); 
f = Fs*(0:(L/2))/L; %create your frequency vector 
subplot(122) 
plot(f,P1, '-r' , 'LineWidth' ,2); %plot the Fourier transform 
xlabel( 'frequency (Hz)' ); 
ylabel( 'Amplitude (V)' ); 
set(gca, 'FontSize' ,20, 'LineWidth' ,2) 
title( 'Fourier Transform' ) 
xlim([0 50])  
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